

Cat. No. C-SCMT0625

INTRODUCTION

The ScriptCap™ 2'-O-Methyltransferase Kit prepares Cap 1-RNA from any source of Cap 0-RNA. In part, Cap 1 methylation serves, to increase the translation efficiency of the mRNA. ScriptCap 2'-O-Methyltransferase transfers a methyl group from the donor molecule S-adenosyl-methionine (SAM) to the 2'-O position of the penultimate nucleotide of a Cap 0 RNA (m⁷G[5']ppp[5']NpN...) to synthesize RNA with a Cap 1 structure (m⁷Gppp[m^{2'-0}]NpNpN...). The Cap 0 RNA can be produced by enzymatically capping uncapped RNA using the ScriptCap m^7G Capping System or by *in vitro* transcription of a DNA template in the presence of a dinucleotide cap analog (e.g., $m_2^{7,3-O}GpppG$; e.g., using a MessageMAXTM T7 ARCA-Capped Message Transcription Kit). Cap 1 RNA can also be synthesized from uncapped RNA in a single reaction mixture that contains both the ScriptCap m⁷G Capping System and ScriptCap 2'-O-Methyltransferase plus SAM.

One ScriptCap 2'-O-Methyltransferase Kit reaction methylates 60 µg of 5'-Cap 0 capped RNA.

MATERIALS

Materials Supplied

Important Store at -20°C in a freezer without a defrost cycle. Do not store at -70°C.

ScriptCap™ 2'-O-Methyltransferase Kit Contents (25 reactions)		
Kit Component	Reagent Volume	
ScriptCap™ 2'-O-Methyltransferase, (blue cap) 100 U/μl, in 50% glycerol, 50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM dithiothreitol (DTT), 0.1 mM EDTA and 0.1% Triton® X-100.	100 µl	

10X ScriptCap™ Capping Buffer 250 µl 0.5 M Tris-HCl, pH 8.0, 60 mM KCl and 12.5 mM MgCl₂ 20 mM S-adenosyl-methionine (SAM) 65 µl ScriptGuard™ RNase Inhibitor, 40 U/µl 65 µl in 50% glycerol, 50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10 mM DTT, 0.1 mM EDTA and 0.1% Triton X-100. RNase-Free Water 2 x 1.4 ml

Materials Required, but not Supplied

- Cap 0 RNA substrate
- Materials or kits for purification of the RNA product

For more information, consult the appropriate safety data sheet (SDS) at www.cellscript.com/products.html.

SPECIFICATIONS

Unit Definition

One unit of ScriptCap 2'-O-Methyltransferase methylates one picomole of a control Cap 0 RNA in 1 hour at 37°C under standard assay conditions.

Contaminating Activity Assays

All components of the ScriptCap 2'-O-Methyltransferase Kit are free of detectable RNase and DNase activities.

BEFORE YOU START: IMPORTANT TIPS FOR OPTIMAL CAPPING

♦ SAM:

SAM slowly degrades over time at room temperature and above. Keep thawed SAM solutions on ice at all times.

♦ Cap 0 RNA Source:

RNA should be purified and resuspended in RNase-Free Water. **Do not resuspend the RNA in an EDTA-containing solution**.

- a) Cap 0-RNA produced using the capping enzyme-based ScriptCap m⁷G Capping System (sold separately): Directly add the ScriptCap 2'-O-Methyltransferase to the ScriptCap m⁷G Capping System reaction either simultaneously or sequentially without prior reaction clean-up.
- b) Cap 0-RNA generated using a dinucleotide cap analog in an *in vitro* transcription reaction: <u>Cleanup the RNA</u> prior to treatment with ScriptCap 2'-O-Methyltransferase. Purify the RNA by your preferred method. The method chosen should remove residual proteins and unincorporated nucleotides from the RNA.

♦ RNA Secondary Structure:

Some RNA transcripts can form stable secondary structures (homodimers and hairpins) involving the 5'-most nucleotides of the transcript severely limiting access of the 5'-penultimate nucleotide to the ScriptCap 2'-O-Methyltransferase. In order to increase the enzymatic efficiency on such RNAs, use longer or hotter heat denaturation conditions than those noted in the protocol. Times and temperatures required will vary.

♦ Poly(A)-Tails:

If the Cap 1-RNA requires subsequent 3'-poly(A)-tailing, using CELLSCRIPT's A-Plus™ Poly(A) Polymerase (sold separately) allows the user to skip RNA purification prior to poly(A)-tailing (see the A-Plus Poly(A) Polymerase product literature for details). Capped and tailed RNA must be purified prior to use in RNA transfection experiments.

PROCEDURE

A. Synthesis of Cap 1-RNA from Cap 0-RNA

1. The protocol below was designed for use with 50-60 μg of Cap 0-RNA. Combine the following reagents:

Standard ScriptCap 2'-O-Methyltransferase Kit Reaction (step 1)	
Component	Amount
RNase-Free Water	xμl
Cap 0-RNA, 50-60 μg	≤81 μl
Total Volume	81 μl

- 2. Incubate at 65°C for 5-10 minutes, then transfer to ice.
- 3. While the heat-denatured RNA is cooling on ice, prepare a "Cocktail" of the following reaction components together in a separate tube.

Standard ScriptCap 2'-O-Methyltransferase Kit Reaction (step 3)	
Component	Amount
10X ScriptCap Capping Buffer	10 μl
20 mM SAM	2.5 μl
ScriptGuard RNase Inhibitor	2.5 μl
ScriptCap 2'-O-Methyltransferase, 400 Units	4 μl
Total Volume	19 μΙ

Combine the Cap 0 RNA Solution from Step 1 with the Cocktail from Step 3.

Standard ScriptCap 2'-O-Methyltransferase Kit Reaction (step 4)	
Component	Amount
Heat-denatured Cap 0-RNA (from step 1)	81 μl
Cocktailed reaction components (from step 3)	19 μl
Total Reaction Volume	100 μl

5. Incubate at 37°C for 30 minutes.

Heat-denaturation of the RNA is an optional step, but it is strongly recommended for RNAs which have not previously been characterized for their ease of enzymatic capping.

Important Only heat-denature the RNA and water components. **Do not** include any other reagent in this step.

A white precipitate may form in the 10X ScriptCap Capping Buffer upon storage. To dissolve it, heat the tube at 37°C for 5 minutes and mix thoroughly.

Important Keep the thawed stock of SAM on ice.

The efficiency of 2'-O-methylation can be lower if the RNA 5' end is structured. If your RNA is not completely 2'-O-methylated, we recommend increasing the incubation time to 2 hours. Also, since the concentration of methylation sites for a given mass is higher for small RNA than for large RNA, increase the reaction time for small RNA. For example, we suggest to increase the reaction time to 2 hours if your RNA is <730 nucleotides in length.

6. The Cap 1 RNA can now be purified, or it can be 3' polyadenylated without purification by adding the reaction mixture directly to an A-Plus Poly(A) Polymerase reaction (sold separately). Purification of poly(A)-tailed Cap 1 RNA is recommended prior to use for RNA transfection.

B. Simultaneous Capping and 2'-O-Methylation to Synthesize Cap 1 RNA from Uncapped RNA

You need to purchase the ScriptCap m⁷G Capping System in addition to ScriptCap 2'-O-Methyl-transferase in order to synthesize Cap 1 RNA from uncapped RNA using the following protocol.
 This protocol was designed for use with 50-60 μg of uncapped RNA.

Combine the following reagents:

Simultaneous Capping and 2'-O-Methylation (step 1)	
Component	Amount
RNase-Free Water	xμl
<i>In vitro</i> transcribed uncapped RNA, 50-60 μg	≤67 μI
Total Volume	67 μl

- 2. Incubate at 65°C for 5-10 minutes, then transfer to ice.
- 3. While the heat-denatured RNA is cooling on ice, prepare a "Cocktail" of the following reaction components together in a separate tube.

Simultaneous Capping and 2'-O-Methylation (step 3)	
Component	Amount
10X ScriptCap Capping Buffer	10 μl
10 mM GTP *	10 μl
20 mM SAM	2.5 μl
ScriptGuard RNase Inhibitor	2.5 μl
ScriptCap 2'-O-Methyltransferase (100 U/μl)	4 μl
Total Volume	29 μΙ

4. **Just prior to starting the reaction,** add the ScriptCap Capping Enzyme to the Cocktail from Step 3 and then combine this with the uncapped RNA solution from Step 1.

Simultaneous Capping and 2'-O-Methylation (step 4)	
Component	Amount
Cocktailed reaction components (from step 3)	29 μl
ScriptCap Capping Enzyme (10 U/μl)*	4 μΙ
Heat-denatured RNA (from step 1)	67 μl
Total Reaction Volume	100 μl

5. Incubate at 37°C for 30 minutes.

Heat-denaturation of the RNA is an optional step, but it is strongly recommended for RNAs which have not previously been characterized for their ease of enzymatic capping.

Important Only heat-denature the RNA and water components. **Do not** include any other reagent in this step.

Important Do not include the ScriptCap Capping Enzyme in this mix.

Important Keep the thawed stock and diluted SAM solutions on ice.

A white precipitate may form in the 10X ScriptCap Capping Buffer upon storage. To dissolve it, heat the tube at 37°C for 5 minutes and mix thoroughly.

* The 10 mM GTP in Step 3 and ScriptCap Capping Enzyme in Step 4 are components of the ScriptCap m⁷G Capping System.

The efficiency of 2'-O-methylation can be lower if the RNA 5' end is structured. If your RNA is not completely 2'-O-methylated, we recommend increasing the incubation time to 2 hours. Also, since the concentration of methylation sites for a given mass is higher for small RNA than for large RNA, increase the reaction time for small RNA. For example, we suggest to increase the reaction time to 2 hours if your RNA is <730 nucleotides in length.

6. The Cap 1 RNA can now be purified, or it can be 3' polyadenylated without purification by adding the reaction mixture directly to an A-Plus Poly(A) Polymerase reaction (sold separately). Purification of poly(A)-tailed Cap 1 RNA is recommended prior to use for RNA transfection.

TROUBLESHOOTING

Symptom	Solution
Low capping or 2'-O-methylation efficiency	RNA to be treated with ScriptCap 2'-O-Methyltransferase should be purified and resuspended in RNase-free water. Do not resuspend the RNA in an EDTA-containing solution.
	Prior to 2'-O-methylation, purify the input RNA using a method that removes residual proteins, contaminants and unincorporated nucleotides and/or cap analogs.
	Verify that ScriptGuard RNase Inhibitor was added to the reaction.
	SAM slowly degrades at room temperature and above. Keep SAM solutions on ice at all times.
	Increase the reaction incubation time. For example, up to 3 hours at 37°C.
	Some RNAs form stable structures (e.g., homodimers, hairpins) at the 5' end, limiting access by Capping Enzyme or 2'-O-Methyltransferase. Analyze the sequence and increase the RNA denaturation temperature to above the $T_{\rm m}$ (e.g., to 65°C for 20 min, 75°C for 10 min, 85°C for 5 min). If the 5' end is highly structured, it might be necessary to modify the 5' end sequence using molecular biology techniques. Often this can be accomplished by making a single point mutation within the first 5 bases of the DNA template for the RNA transcript (non-coding region).
White precipitate in reaction buffer	Incubate the reaction buffer at 37°C for 5 minutes then mix thoroughly to dissolve the precipitate.
	Do not store the kit at –70°C.

RELATED PRODUCTS

- A-Plus™ Poly(A) Polymerase Tailing Kit
- Cap-Clip™ Acid Pyrophosphatase
- INCOGNITO™ T7-FlashScribe™ Ψ-RNA Transcription Kit
- INCOGNITO™ T7-FlashScribe™ N1meΨ-RNA Transcription Kit
- INCOGNITO™ T7 mScript™ Ψ-mRNA Production System
- INCOGNITO [™] T7 mScript [™] N1meΨ-mRNA Production System
- INCOGNITO™ SP6 Ψ-RNA Transcription Kit
- INCOGNITO™ T7 Ψ-RNA Transcription Kit
- INCOGNITO™ T7 5mC- & Ψ-RNA Transcription Kit

- INCOGNITO™ T7 ARCA 5mC- & Ψ-RNA Transcription Kit
- MessageMAX™ T7 ARCA-Capped Message Transcription Kit V2
- ScriptCap™ Cap 1 Capping System
- ScriptCap™ m⁷G Capping System
- ScriptGuard™ RNase Inhibitor
- SP6-Scribe™ Standard RNA IVT Kit
- T7-FlashScribe™ Transcription Kit
- T7 mScript™ Standard mRNA Production System
- T7-Scribe™ Standard RNA IVT Kit

REFERENCE

1. Kuge, H. et al., (1998) Nucl. Acids Res. 26, 3208.

The performance of this product is guaranteed for one year from the date of purchase.

Triton is a registered trademark of Rohm & Haas, Philadelphia, Pennsylvania.

A-Plus, Cap-Clip, CELLSCRIPT, INCOGNITO, MessageMAX, mScript, ScriptCap, ScriptGuard, SP6-Scribe, T7-FlashScribe and T7-Scribe are trademarks of CELLSCRIPT, Madison, Wisconsin.

The Purchaser of this product agrees to the TERMS AND CONDITIONS posted on CELLSCRIPT's website: http://www.cellscript.com.

© 2024 CELLSCRIPT, All rights reserved.